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Abstract. We present a possibly great improvement while performing semi-

supervised learning tasks from training data sets when only a small fraction of 

the data pairs is labeled. In particular, we propose a novel decision strategy 

based on normalized model outputs. The paper compares performances of two 

popular semi-supervised approaches (Consistency Method and Harmonic Gaus-

sian Model) on the unbalanced and balanced labeled data by using normaliza-

tion of the models’ outputs and without it. Experiments on text categorization 

problems suggest significant improvements in classification performances for 

models that use normalized outputs as a basis for final decision. 

1. Introduction 

Today, there are many learning from data paradigms, the most popular and the most 

used ones being classification and regression models [2]. They belong to the so-called 

supervised learning algorithms in which a learning machine attempts to learn the 

input-output relationship (dependency or function) f(x) by using a training data set X 

= {[x(i), y(i)] ∈ ℜm × ℜ, i = 1,...,n} consisting of n pairs (x1, y1), (x2, y2), …, (xn, yn), 

where the inputs x are m-dimensional vectors x ∈ ℜ m and the labels (or system re-

sponses) y ∈ ℜ are continuous values for regression tasks and discrete (e.g., Boolean) 

for classification problems. Another large group of standard learning algorithms are 

the ones dubbed as unsupervised ones when there are only raw data xi ∈ ℜ
 m without 

the corresponding labels yi (i.e., there is a ‘no-teacher’ in a shape of labels). The most 

popular, representative, algorithms belonging to this group are various clustering and 

(principal or independent) component analysis routines.  

Recently, however, we are facing more and more instances in which the learning 

problems are characterized by the presence of (usually) a small percentage of labeled 

data only. In this novel setting, the task is to predict the labels (or the belonging to 

some class) of the unlabeled data points. This learning task belongs to the so-called 

semi-supervised or transductive inference problems. The cause for an appearance of 

the unlabeled data points is usually expensive, difficult and slow process of obtaining 

labeled data. Thus, labeling brings the costs and often it is not feasible. The typical 

areas where this happens is the speech processing (due to the slow transcription), text 

categorization (due to huge number of documents, slow reading by humans and their 

general lack of a capacity for a concentrated reading activity), web categorization, 
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and, finally, a bioinformatics area where it is usually both expensive and slow to label 

huge number of data produced.  

Recently several approaches to the semi-supervised learning were proposed. Here, 

we present, compare and improve the two transductive approaches, namely, the har-

monic Gaussian model introduced in [6] and consistency method for semi-supervised 

learning proposed in [5].  

However, none of the methods successfully analyzes the possible problems con-

nected with the so-called unbalanced labeled data, meaning with the situations when 

the number of labeled data differs very much between the classes. We propose the 

normalization of the classifier outputs before a final decision about the labeling is 

done. 

Paper is organized as follows: In section 2 we present the basic forms of the two 

methods. Section 3 introduces the normalization step which improves the perform-

ance of both the consistency method and the harmonic Gaussian model faced with 

unbalanced labeling significantly. It also compares the effects of normalization with 

the results of both methods obtained and presented in [5]. Section 4 concludes the 

presentations here and proposes possible avenues for the further research in this novel 

area of semi-supervised learning. 

2. Consistency Method Algorithm and Harmonic Gaussian 

Model 

There exist a great variety of methods and approaches in semi-supervised learning. 

The powerful software SemiL for solving semi-supervised (transductive) problems, 

used within this study, is capable of using 12 different models for a semi-supervised 

learning (as suggested in [4]). Namely, it can solve the following variously shaped 

semi-supervised learning algorithms: both the hard label approach with the maximiza-

tion of smoothness and the soft label approach with the maximization of smoothness, 

for all three types of models (i.e., Basic Model, Norm Constrained Model and Bound 

Constrained Model) and by using either Standard or Normalized Laplacian. Present-

ing all the variety of results would require much bigger space than it is allowed within 

the constrained space allotted here. That’s why the presentation here will be focused 

on two basic models only, and on an introduction of a normalization step as the first 

possible significant stage in improving results to date. 

Below we present Global consistency model from [5] which is a soft label ap-

proach with the maximization of smoothness that uses a normalized Laplacian with-

out a norm constraint, as well as the Harmonic Gaussian method presented in [6] 

which is a hard label approach with the maximization of smoothness that uses a stan-

dard Laplacian also without a norm constraint. 

2.1 Global consistency model 

The presentation here follows the basic model proposed in [5] tightly. 
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Given a point set X as defined in the Introduction the first l points xi are labeled, 

and the remaining points xu(l + 1 ≤ u ≤ n) are unlabeled. The goal is to predict the 

label of the unlabeled points.  

Let F denote the set of n x c matrices with nonnegative entries. A matrix F = 

[F1
T , …, Fn

T ]T ∈ F corresponds to a classification on the dataset X by labeling each 

point xi as a label yi = arg maxj ≤ c Fij. We can understand F as a vectorial function F : 

X → Rc which assigns a vector Fi to each point xi. Define an n x c matrix Y ∈ F with 

Yij = 1 if xi is labeled as yi = j and Yij = 0 otherwise. Clearly, Y is consistent with the 

initial labels according the decision rule. The algorithm is as follows:  

 

1. Form the affinity matrix W defined by Wij = exp(-|| xi – xj ||
2 /2σ2) if i ≠ j and 

Wii = 0. 

2. Construct the matrix S = D-1/2WD-1/2 in which D is a diagonal matrix with its 

(i, i)-element equal to the sum of the i-th row of W. 

3. Iterate F(t+1) = αSF(t)+(1 - α)Y until convergence, where α is a parameter 

in (0, 1). 

4. Let F* denotes the limit of the sequence {F(t)}. Label each point xi as a label 

yi = arg maxj ≤ c Fij
*.  

 

First, one calculates a pairwise relationship W on the dataset X with the diagonal 

elements being zero. In doing this, one can think of a graph G = (V, E) defined on X, 

where the vertex set V is just X and the edges E are weighted by W. In the second 

step, the weight matrix W of G is normalized symmetrically, which is necessary for 

the convergence of the following iteration. The first two steps are exactly the same as 

in spectral clustering [3]. Here, we did not solve the problem in an iterative way as 

shown above. Instead, we solve the corresponding equivalent system of linear equa-

tions (I - αS) F* = Y for F* by using conjugate gradient method which is highly rec-

ommended approach for dealing with huge data set. Also, instead of using the com-

plete graph we calculated the W matrix by using only 10 nearest neighbors. This step 

decreases the accuracy only slightly, but it increases the calculation speed signifi-

cantly. Note that self-reinforcement is avoided since the diagonal elements of the 

affinity matrix are set to zero in the first step (Wij = 0). The model labels each unla-

beled point and assigns it to the class for which the corresponding F* value is the 

biggest, as given in step 4above. 

2.2 Harmonic Gaussian Model 

The presentation here also follows the basic model proposed in [6] tightly. The al-

gorithm is as follows:  

 

1. Form the affinity matrix W defined by Wij = exp(-|| xi – xj ||
2 /2σ2). 

2. Construct the diagonal matrix D with its (i, i)-element equal to the sum of the 

i-th row of W. Note that we can use W and D as given in section 2.1 above 

too. 
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3. Form the following two matrices ,
ll lu ll

ul uu uu

   
= =   
   

W W D 0
W D

W W 0 D
 

as well as the vector f = [fl    fu]
T, where l stands for the labeled data points 

and u for the unlabeled ones. 

4. Solve for fu as follows  fu  = (Duu  -  Wuu) 
-1 Wulfl  which is the solution 

for the unlabeled data points.  

 

More detailed description of the two basic models, namely, the global consistency 

model and the harmonic Gaussian model can be found in [5] and [6] respectively. 

3. Performance of the Two Models and Possible Improvement 

The extensive simulations on various data sets (as presented in [5]) have indicated 

that both models behave similarly and according to the expectations that with an in-

crease in the number of labeled data points l, the overall models’ accuracies improve 

too. There was just a slightly more superior performance of the consistency model 

from [5] in respect to the harmonic Gaussian model, when faced with a small number 

of unbalanced labeled data. At the same time, the later model performed much better 

for extremely small number of the labeled data as long as they are balanced (meaning 

there is a same number of the labeled points for all the classes. Here, an extremely 

small number meant 1 labeled data per each class only, in the text categorization 

problem from [5]).  

Such a behavior needed a correct explanation and it asked for further investiga-

tions during which several phenomena have been observed. While working with bal-

anced labeled data (meaning with the same number of labeled data per class) har-

monic Gaussian method performed better than the consistency model. On the con-

trary, for a small number of unbalanced labeled data, the harmonic Gaussian model 

performed worse than the consistency one. This indicates a sensitivity of the former 

while working with the unbalanced labeled data.  

At the same time a simulation shows that in the harmonic Gaussian method the 

mean value of the class with less labeled points is lower than for the classes with 

more labeled data. Recall that the final decision is made based on the maximum of the 

F
* values and obviously the elements of the class with less labeled data could be as-

signed to different class just due to the fact that the (mean) values of other classes are 

higher.  

The causes of these phenomena can be understand by interpreting both algorithms 

in term of a lazy random walking which is determined by the transition probability 

matrix P=(1-α)I+αD-1W as shown in [7]. In this setting, one can find the expected 

number of steps for a random walk starting at some initial position
ix to reach jx  and 

then return. This expectation is often referred as the commute time between the two 

positions and denoted by Cij. It has been shown that  

C G +G -G -Gij ii ij ii ji∝  if 
i jx x≠  
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where G is the inverse of the matrix D-αW. If we now consider a binary classifica-

tion that is given by f=(D-αW)-1y then the classification is based on the comparison 

between 
{ | 1}

( ) G
j

i ijj y
p x

+ =
=∑ and 

{ | 1}
( ) G

j
i ijj y

p x
− =−

=∑ [7]. This means, we are 

labeling an unlabeled point by summing up and comparing the commute times of this 

point to all the positive labeled points and to all the negative labeled points. With 

more positive labeled points, the mean of f will be greater than zero and vice verse. 

Similar phenomenal will occur in the global consistency method, but instead of using 

the commute time as a measure of distance, a normalized commute time obtaining 

from the inverse of the normalized Laplacian (I-αS) matrix is used. In the harmonic 

Gaussian methods, the original commute time is used, but instead of using the com-

mute time between the labeled and the unlabeled points, it uses commute times be-

tween the point of interested to the rest of the unlabeled points. These commute times 

are weighted by Wulfl first and then added together. Again, the mean of f will still be 

affected by the difference in number between positive label and negative label points. 

If we now consider solving a multi-class problem using several binary classifiers, then 

a binary classifier with less number of positive labeled points will be more disadvan-

tageous then others, because the mean of its output f will be lower, i.e., the class with 

less labeled points will be disadvantageous. The figure bellow demonstrates the effect 

of unbalanced labeled data. It is clear that with unbalanced labeled data, the perform-

ance of the algorithm can deteriorate even with more labeled data available.  
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Fig. 1. A multi-class toy example for demonstrating the effect of unbalanced labeled data. 

 

This led us to the introduction of a normalization step for the elements of the col-

umn vectors Fi
* bringing them to the vectors with a mean = 0, and with a standard 
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deviation = 1. Only now, after the normalization is performed, the algorithm searches 

for the maximal value along the rows of a matrix F* and labels the unlabeled i-th data 

to the class j if F*ij > F
*
ik, k = 1, c , k ≠ j. 

The introduction of the normalization step improves the behavior of the algorithm 

significantly as it is shown in Fig. 2, where we compare performances of the two 

models without normalization as given in [5] to the performances of both models 

incorporating a normalization part.  

Same as in [5], in the experiment here, we investigated the task of text classifica-

tion using the 20-newsgroups dataset. The chosen topic was rec which contains autos, 

motorcycles, baseball, and hockey from the version 20-news-18828. The articles were 

processed by the Rainbow software package with the following options: (1) passing 

all words through the Porter stemmer before counting them; (2) tossing out any token 

which is on the stop list of the SMART system; (3) skipping any headers; (4) ignoring 

words that occur in 5 or fewer documents. No further preprocessing was done. Re-

moving the empty documents, we obtained 3970 document vectors in a 8014-

dimensional space. Finally the documents were normalized into TFIDF representa-

tion. The cosine distance between points was used here too. The mentioned procedure 

is the same as in [5] just in order to ensure the same experiment’s setting for same 

data set. 

We played with various widths of the Gaussian RBF and the results with a few σ-s 

are shown in Fig. 1. The results in [5] use σ = 0.15 for both harmonic Gaussian 

method and consistency method. The test errors shown are averaged over 100 trials. 

Samples were chosen so that they contain at least one labeled point for each class. 

Thus, the setting of the experiment is identical to the one in [5]. 
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Fig. 2. The error rates of text classification with 3970 document vectors in an 8014-

dimensional space for recreation data sets from version 20-news-18828. At least one labeled 



Semi-supervised Learning from Unbalanced Labeled Data – An Improvement      771 

data for each class must be labeled. The smallest number of labeled data here is therefore 4. 

The normalized model outputs outperform the algorithms without normalization 

 

Several interesting phenomena can be observed in Fig. 2. First, the normalization 

improves the performances of both methods very significant                                                                                                                                                                                                                   

ly. This can be observed easily by comparing the error rates between the models with 

and without normalization. The error rates of the consistency method for four labeled 

points drop from 46% to 22%. When 50 points are labeled, the error rates drop from 

around 22% to about 13% and similar improvements can be found on the harmonic 

Gaussian method.  

The only exception is in the case of the later method when there are only four la-

beled points available. In this situation, the error rate of the harmonic Gaussian is 

already much lower than the consistency method’s one, even without normalization 

and the improvement by normalization is not as significant as in other cases. This is a 

consequence of having balanced labeled data points from each class (1 in each class). 

Hence, the mean values of F* along each column are closer to each other and there is 

no need for normalization.  

In contrast, when the number of labeled points in each class is different (i.e., un-

balanced which is the case whenever there is more than 4 labeled data for four classes 

and random labeling is used) the performance gain from normalization is more sig-

nificant. The negative effect of unbalanced data can be observed from following the 

increase in error rate when working with ten data of labeled points and if normaliza-

tion is not applied within the harmonic Gaussian method. Without normalization, the 

harmonic Gaussian method needs approximately forty unbalanced labeled points to 

match its very performance when having four balanced labeled points only. In con-

trast, the performance of the normalized model with ten unbalanced labeled data out-

performs the result for the four balanced points. With a normalization step, the har-

monic Gaussian method seems to be slightly better than the consistency method. This 

is not the case while working without the normalization. The best model for the text 

categorization data in our experiments is a harmonic Gaussian model with width 

equal to 0.3 which achieves an accuracy of 90% with only 50 labeled points out of 

3970 of the total data points. For both methods with normalization of F*, models with 

smaller width parameter perform slightly better than with the larger widths. Finally, 

for a 3970 data, the learning run based on a conjugate gradient algorithm takes only 

about 25 seconds of a CPU time on a 2MHz laptop machine for 100 random tests runs.  

4. Conclusions 

The extensive simulations have shown that an introduction of a normalization step 

improves the behavior of both transductive inference models (namely, consistency 

method and harmonic Gaussian one) very significantly. In both methods, the normali-

zation of F* improves the performance up to fifty percents. However, the results are 

inconclusive, because many areas still need to be explored and more investigations 

are needed before final conclusions. For example, in this study we only investigate 

two basic models out of the twelve possible models mentioned earlier. Also, there are 

several parameters associated with these algorithms which can alter the overall per-
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formance of the model, e.g., the parameter for constraining the norm of F* (as sug-

gested in [4]) can also have some impact on the performance of the models. This 

means that there may still be some space for improving the performance of the semi-

supervised learning algorithms even further. In addition, the effects of a normalization 

step for other data set should also be further explored. The work presented here, can 

be treated as an initial step in this area only. It demonstrated that the way how the 

decisions are made from the output of these models can have a significant impact on 

the final classification performance. Our future work will go along the path of finding 

better decision strategies. 
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